Soil Moisture - Cosmic-Ray Soil Moisture Probe Hydroinnova

From ExperimentalHydrologyWiki
Jump to: navigation, search

Cosmic ray1.JPG Cosmic ray2.jpg

Contents

Parameter to be measured:

Soil moisture

Method:

3He neutron detector counts cosmic-ray neutrons. Cosmic-ray neutron count is converted to soil moisture via a calibrated relationship.

Equipment:

Calibration:

A rough guideline on the calibration procedure can be found here: File:CosmicCalibration.pdf

Advantages:

Measurement of average soil moisture for a spatial scale of 300 m radius around the measurement device, averaged over depth of several decimetres.

Disadvantages:

Under wet conditions the measurement depth decreases, from 80 cm in dry soils to 10 cm in wet soils. Water bodies (lakes, storage ponds) influence the signal. Biomass growth influences the signal.

What to watch out for:

1) Variability of penetration depth due to changes of mean areal soil moisture in the cosmic-ray footprint.
2) Possible site-specific fitting parameters of equation for soil moisture estimation. This is due to changes of conditions involved on neutron transport.
3) Watch out for significant fluctuations of incoming high-energy cosmic rays.

Problems/Questions:

Price:

11.500 US$ (2010)

Links:

Projects that used the above equipment:

Other related web sites:

References

Almeida, A.C., Dutta, R. Franz, T.E., Terhorst, A., Smethurst, P.J., Baillie, C., Worledge, D.: Combining Cosmic-Ray Neutron and Capacitance Sensors and Fuzzy Inference to Spatially Quantify Soil Moisture Distribution, IEEE Sensors Journal, 14(10), 3465-3472, DOI: 10.1109/JSEN.2014.2345376, 2014.
Baatz, R., Bogena, H.R., Hendricks Franssen, H.-J., Huisman, J.A., Qu, W., Montzka, C., Vereecken, H.: Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods, Journal of Hydrology, 2014.
Baatz, R., Bogena, H.R., Hendricks Franssen, H.-J., Huisman, J.A., Qu, W., Montzka, C., Vereecken, H.: An empirical vegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., DOI: 10.1002/2014WR016443, 2015.
Baroni, G., Oswald, S.E.: A scaling approach for the assessment of biomass changes and rainfall interception using Cosmic-Ray neutron sensing, Journal of Hydrology, DOI: 10.1016/j.jhydrol.2015.03.053, 2015.
Bogena, H.R., Huisman, J.A., Baatz, R., Hendriks-Franssen, H.-J., Vereecken, H.: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario, Water Resour. Res., DOI: 10.1002/wrcr.20463, 2013.
Chrisman, B., Zreda, M.: Quantifying mesoscale soil moisture with the cosmic-ray rover, Hydrol. Earth Syst. Sci., 17, 5097-5108, DOI: 10.5194/hess-17-5097-2013, 2013.
Desilets, D., Zreda, M., Ferre, T.P.A.: Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays, Water Resour. Res., 46, W11505, doi:10.1029/2009WR008726, 2010.
Desilets, D., Zreda, M.: Footprint diameter for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations, Water Resour. Res., 49, 3566–3575, DOI: 10.1002/wrcr.20187, 2013.
Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng,X., Shuttleworth W.J.: Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources, Water Resour. Res., 48, W08515, DOI: 0.1029/2012WR011871, 2012.
Franz, T.E., Zreda, M., Rosolem, R., Ferre, T.P.A.: Field Validation of a Cosmic-Ray Neutron Sensor Using a Distributed Sensor Network, VADOSE ZONE JOURNAL, 11(4), DOI: 10.2136/vzj2012.0046, 2012.
Franz, T.E., Zreda, M., Rosolem, R., Hornbuckle, B.K., Irvin, S.L., Adams, H., Kolb, T.E., Zweck, C., Shuttleworth, W.J.: Ecosystem-scale measurements of biomass water using cosmic ray neutrons, Geophys. Res. Lett. 40(15), 3929-3933, DOI: 10.1002/grl.50791, 2013.
Franz, T.E., Zreda, M., Rosolem, R., Ferre, T.P.A.: A universal calibration function for determination of soil moisture with cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 17(2), 453-460, DOI: 10.5194/hess-17-453-2013, 2013.
Franz, T.E., Wang, T., Avery, W., Finkenbinner, C., Brocca, L.: Combined analysis of soil moisture measurements from roving and fixed cosmic ray neutron probes for multiscale real-time monitoring, Geophys. Res. Lett., DOI: 10.1002/2015GL063963, 2015.
Hawdon, A., McJannet, D., Wallace, W.:Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia, Water Resour. Res. 50(6), 5029–5043, DOI: 10.1002/2013WR015138, 2014.
Han, X., Jin, R., Li, X., Wang, S.G.: Soil Moisture Estimation Using Cosmic-Ray Soil Moisture Sensing at Heterogeneous Farmland, IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 11(9), 1659-1663, DOI: 10.1109/LGRS.2014.2314535, 2014.
Han, X., Hendricks Franssen, H.-J., Rosolem, R., Jin, R., Li, X., Vereecken, H.: Correction of systematic model forcing bias of CLM using assimilation of cosmic-ray Neutrons and land surface temperature: a study in the Heihe Catchment, China, Hydrol. Earth Syst. Sci., 19(1), 615-629, DOI: 10.5194/hess-19-615-2015, 2015.
Heidbüchel, I., Güntner, A., Blume, T.: Use of cosmic-ray neutron sensors for soil moisture monitoring in forests, Hydrol. Earth Syst. Sci., 20, 1269-1288, DOI:10.5194/hess-20-1269-2016, 2016.
Koehli, M., Schroen, M., Zreda, M., Schmidt, U., Dietrich, P., Zacharias, S.: Footprint Characteristics Revised for Field-Scale Soil Moisture Monitoring with Cosmic-Ray Neutrons, Water Resour. Res., DOI: 10.1002/2015WR017169, 2015.
Ling, L., Franz, T.E., Robinson, D.A., Jones, S.B.: Measured and Modeled Soil Moisture Compared with Cosmic-Ray Neutron Probe Estimates in a Mixed Forest, Vadose Zone Journal, 13(12), DOI: 10.2136/vzj2014.06.0077, 2014.
McJannet, D., Franz, T.E., Hawdon, A., Boadle, D., Baker, B., Almeida, A., Silberstein, R., Lambert, T., Desilets, D.: Field testing of the universal calibration function for determination of soil moisture with cosmic-ray neutrons, Water Resour. Res. 50(6), 5235–5248, DOI: 10.1002/2014WR015513, 2014.
Rivera Villarreyes, C.A., Baroni, G., Oswald, S.E.: Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 15(12), 3843-3859, DOI: 10.5194/hess-15-3843-2011, 2011.
Rosolem, R., Shuttleworth, W.J., Zreda, M., Franz, T.E., Zeng, X., The Effect of Atmospheric Water Vapor on the Cosmic-ray Soil Moisture Signal, JOURNAL OF HYDROMETEOROLOGY 14(5), 1659-1671, DOI: DOI: 10.1175/JHM-D-12-0120.1, 2013.
Schreiner-McGraw, A.P., Vivoni, E.R., Mascaro, G., Franz, T.E.: Closing the water balance with cosmic-ray soil moisture measurements and assessing their spatial variability within two semiarid watersheds, Hydrol. Earth Syst. Sci. Discuss., 12, 5343-5388, DOI: 10.5194/hessd-12-5343-2015, 2015.
Rosolem, R., Hoar, T., Arellano, A., Anderson, J.L. , Shuttleworth, W.J., Zeng, X., Franz, T.E.: Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale, Hydrol. Earth Syst. Sci., 18(11), 4363-4379, DOI: 10.5194/hess-18-4363-2014, 2014.
Zreda, M., Desilets, D., Ferre, T.P.A., Scott, R.L.: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons, Geophys. Res. Lett., 23(9), 949-952, 2008.
Zreda, M., Shuttleworth, W.J., Zeng, X., Zweck, C., Desilets, D., Franz, T.E., Rosolem, R., Ferre, T.P.A.: COSMOS: The Cosmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079-4099, DOI: 10.5194/hess-16-4079-2012, 2012.
Personal tools