Difference between revisions of "Walnut Gulch Experimental Watershed"

From Experimental Hydrology Wiki
Jump to navigation Jump to search
Line 35: Line 35:
  
 
[[Category:Experimental Catchments]]
 
[[Category:Experimental Catchments]]
 +
*Amitai, E., Unkrich, C.L., Goodrich, D.C., E. Habib, E., Thill, B., 2012: Assessing Satellite- Based Rainfall Estimates in Semiarid Watersheds Using the USDA-ARS Walnut Gulch Gauge Network and TRMM PR. J. Hydrometeor., 13, 1579–1588, DOI: 10.1175/JHM-D-716 12-016.1.
 
*Costa, A.C., Bronstert, A., de Araújo, J.C. 2012. [http://www.hydrol-earth-syst-sci.net/16/1111/2012/hess-16-1111-2012.html A channel transmission losses model for different dryland rivers.] Hydrol. Earth Syst. Sci., 16, 1111-1135, DOI: 10.5194/hess-16-1111-2012.
 
*Costa, A.C., Bronstert, A., de Araújo, J.C. 2012. [http://www.hydrol-earth-syst-sci.net/16/1111/2012/hess-16-1111-2012.html A channel transmission losses model for different dryland rivers.] Hydrol. Earth Syst. Sci., 16, 1111-1135, DOI: 10.5194/hess-16-1111-2012.
 
*Emmerich, W.E., Verdugo, C.L. 2008. Long-term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res., 44, W05S09, DOI: 10.1029/2006WR005693.
 
*Emmerich, W.E., Verdugo, C.L. 2008. Long-term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res., 44, W05S09, DOI: 10.1029/2006WR005693.
 +
*Das, N.N., Mohanty, B.P., Cosh, M.H., Jackson, T.J., 2008. Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04. Remote Sensing of Environment, 112(2), 415-429, DOI: 10.1016/j.rse.2006.10.027.
 
*Gao, P., Nearing, M.A., Commons, M. 2013. Suspended sediment transport at the instantaneous and event time scales in semiarid watersheds of southeastern Arizona, USA. Water Resour. Res., 49(10), 6857-6870,  DOI: 10.1002/wrcr.20549.
 
*Gao, P., Nearing, M.A., Commons, M. 2013. Suspended sediment transport at the instantaneous and event time scales in semiarid watersheds of southeastern Arizona, USA. Water Resour. Res., 49(10), 6857-6870,  DOI: 10.1002/wrcr.20549.
 +
*Goodrich, D. C., Keefer, T.O., Unkrich, C.L., Nichols, M.H., Osborn, H.B., Stone, J.J., Smith, J.R., 2008. Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, DOI: 10.1029/2006WR005782.
 
*Houser, P., Gupta, H.V., Shuttelworth, W.J., Famiglietti, J.S. 2001. Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 106, D24, 33421-33433, DOI: 10.1029/2000JD900803.
 
*Houser, P., Gupta, H.V., Shuttelworth, W.J., Famiglietti, J.S. 2001. Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 106, D24, 33421-33433, DOI: 10.1029/2000JD900803.
 
*Keefer, T.O., Renard, K.G., Goodrich, D.C., Heilman, P., Unkrich, C., 2016. Quantifying extreme rainfall events and their hydrologic response in southeastern Arizona. Journal of Hydrologic Engineering, 21(1),04015054, DOI: 10.1061/(ASCE)HE.1943-5584.0001270.
 
*Keefer, T.O., Renard, K.G., Goodrich, D.C., Heilman, P., Unkrich, C., 2016. Quantifying extreme rainfall events and their hydrologic response in southeastern Arizona. Journal of Hydrologic Engineering, 21(1),04015054, DOI: 10.1061/(ASCE)HE.1943-5584.0001270.
 
*Langhans, C., Govers, G., Diels, J., Stone, J.J., Nearing, M.A. 2014. Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth.  ADVANCES IN WATER RESOURCES, 69, 65-78, DOI: 10.1016/j.advwatres.2014.03.005.
 
*Langhans, C., Govers, G., Diels, J., Stone, J.J., Nearing, M.A. 2014. Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth.  ADVANCES IN WATER RESOURCES, 69, 65-78, DOI: 10.1016/j.advwatres.2014.03.005.
 +
*Moran, M.S., Emmerich, W.E., Goodrich, D.C., Heilman, P., Holifield Collins, C.D., Keefer, T.O., Nearing, M.A., Nichols, M.H., Renard, K.G., Scott, R.L., Smith, J.R., Stone, J.J., Unkrich, C.L., Wong, J., 2008. Preface to special section on fifty years of research and data collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed, Water Resour. Res., 44, W05S01, DOI: 10.1029/2007WR006083.
 +
*Nearing, M.A., Nichols, M.H., Stone, J.J., Renard, K.G., Simanton, J.R., 2007. Sediment yields from unit-source semiarid watersheds at Walnut Gulch. Water Resour. Res., 43(6), W06426, DOI: 10.1029/2006WR005692.
 
* Nichols, M.H., Nearing, M.A., Polyakov, V.O.,  Stone, J.J. 2013. A sediment budget for a small semiarid watershed in southeastern Arizona, USA.  GEOMORPHOLOGY 180, 137-145, DOI: 10.1016/j.geomorph.2012.10.002.
 
* Nichols, M.H., Nearing, M.A., Polyakov, V.O.,  Stone, J.J. 2013. A sediment budget for a small semiarid watershed in southeastern Arizona, USA.  GEOMORPHOLOGY 180, 137-145, DOI: 10.1016/j.geomorph.2012.10.002.
*Nichols, M.H., Nearing, M., Hernandez, M., Polyakov, V.O., 2016. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography. Geomorphology, 265, 107-116, DOI: .
+
*Nichols, M.H., Nearing, M., Hernandez, M., Polyakov, V.O., 2016. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography. Geomorphology, 265, 107-116, DOI: 10.1016/j.geomorph.2016.05.001.
 
*[http://www.earth-surf-dynam.net/4/471/2016/ Pelletier, J.D., Nichols, M.H., Nearing, M.A. , 2016. The influence of Holocene vegetation changes on topography and erosion rates: A case study at Walnut Gulch Experimental Watershed, Arizona. Earth Surface Dynamics, 4(2), 471-488, DOI: 10.5194/esurf-4-471-2016.]
 
*[http://www.earth-surf-dynam.net/4/471/2016/ Pelletier, J.D., Nichols, M.H., Nearing, M.A. , 2016. The influence of Holocene vegetation changes on topography and erosion rates: A case study at Walnut Gulch Experimental Watershed, Arizona. Earth Surface Dynamics, 4(2), 471-488, DOI: 10.5194/esurf-4-471-2016.]
 
*Polyakov, V.O., Nearing, M.A., Hawdon, A.A.,  Wilkinson, S.N., Nichols, M.H. 2013.  Comparison of two stream gauging systems for measuring runoff and sediment yield for a semi-arid watershed.  EARTH SURFACE PROCESSES AND LANDFORMS 38(4), 383-390, DOI: 10.1002/esp.3287.
 
*Polyakov, V.O., Nearing, M.A., Hawdon, A.A.,  Wilkinson, S.N., Nichols, M.H. 2013.  Comparison of two stream gauging systems for measuring runoff and sediment yield for a semi-arid watershed.  EARTH SURFACE PROCESSES AND LANDFORMS 38(4), 383-390, DOI: 10.1002/esp.3287.
 
* Sabzevari, T., Noroozpour, S. 2014. Effects of hillslope geometry on surface and subsurface flows. HYDROGEOLOGY JOURNAL 22(7), 1593-1604, DOI: 10.1007/s10040-014-1149-6.
 
* Sabzevari, T., Noroozpour, S. 2014. Effects of hillslope geometry on surface and subsurface flows. HYDROGEOLOGY JOURNAL 22(7), 1593-1604, DOI: 10.1007/s10040-014-1149-6.
 
* Scott, R.L. 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology 150, 219–225, DOI: 10.1016/j.agrformet.2009.11.002.
 
* Scott, R.L. 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology 150, 219–225, DOI: 10.1016/j.agrformet.2009.11.002.
 +
*Scott, R.L., Biederman, J.A., Hamerlynck, E.P., Barron-Gafford, G.A., 2015. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. Journal of Geophysical Research G: Biogeosciences, 120(12), 2612-2624, DOI: 10.1002/2015JG003181.
 
* Sivandran, G., Bras, R.L. 2013.  Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed.  Water Resour. Res., 49(6), 3292-3305, DOI: 10.1002/wrcr.20245.
 
* Sivandran, G., Bras, R.L. 2013.  Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed.  Water Resour. Res., 49(6), 3292-3305, DOI: 10.1002/wrcr.20245.
 
*Sivandran, G., Bras, R.L. 2012.  Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment. Water Resour. Res., 48, W12525, DOI: 10.1029/2012WR012055.
 
*Sivandran, G., Bras, R.L. 2012.  Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment. Water Resour. Res., 48, W12525, DOI: 10.1029/2012WR012055.
* Stillman, S., Ninneman, J.,, Zeng, X.B., Franz, T., Scott, R.L., Shuttleworth, W.J., Cummins, K. 2014. Summer Soil Moisture Spatiotemporal Variability in Southeastern Arizona. JOURNAL OF HYDROMETEOROLOGY, 15(4), 1473-1485.DOI: http://dx.doi.org/10.1175/JHM-D-13-0173.1.
+
* Stillman, S., Ninneman, J.,, Zeng, X.B., Franz, T., Scott, R.L., Shuttleworth, W.J., Cummins, K. 2014. Summer Soil Moisture Spatiotemporal Variability in Southeastern Arizona. J. Hydrometeor., 15(4), 1473-1485.DOI: http://dx.doi.org/10.1175/JHM-D-13-0173.1.
* [http://media.wix.com/ugd/c66866_632bf8a87fcb4d379f6370aea8c678f3.pdf Stillman, S., Zeng, X.B., Shuttleworth, WJ., Goodrich, D.C., Unkrich, C.L., Zreda, M. 2013. Spatiotemporal Variability of Summer Precipitation in Southeastern Arizona. JOURNAL OF HYDROMETEOROLOGY, 14(6), 1944-1951, DOI: 10.1175/JHM-D-13-017.1].
+
* [http://media.wix.com/ugd/c66866_632bf8a87fcb4d379f6370aea8c678f3.pdf Stillman, S., Zeng, X.B., Shuttleworth, WJ., Goodrich, D.C., Unkrich, C.L., Zreda, M. 2013. Spatiotemporal Variability of Summer Precipitation in Southeastern Arizona. J. Hydrometeor., 14(6), 1944-1951, DOI: 10.1175/JHM-D-13-017.1].
 +
*Stillman, S., Zeng, X., Bosilovich, M.G., 2016. Evaluation of 22 precipitation and 23 soil moisture products over a semiarid area in Southeastern Arizona. J. Hydrometeor., 17(1), 211-230, DOI: 10.1175/JHM-D-15-0007.1.
 
*Tabatabaeenejad, A., Burgin, M., Duan, X.Y., Moghaddam, M., 2015. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results.  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 53(2), 645-658, DOI: 10.1109/TGRS.2014.2326839.
 
*Tabatabaeenejad, A., Burgin, M., Duan, X.Y., Moghaddam, M., 2015. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results.  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 53(2), 645-658, DOI: 10.1109/TGRS.2014.2326839.
 
* White, C.B., Houser, P.R., Arain, A.M., Yang, Z.L., Syed, K., Shuttleworth,  W.J. 1997. [http://www.hydrol-earth-syst-sci.net/1/205/1997/hess-1-205-1997.html The aggregate description of semi-arid vegetation with precipitation-generated soil moisture heterogeneity.] Hydrol. Earth Syst. Sci., 1, 205-212, DOI: 10.5194/hess-1-205-1997.
 
* White, C.B., Houser, P.R., Arain, A.M., Yang, Z.L., Syed, K., Shuttleworth,  W.J. 1997. [http://www.hydrol-earth-syst-sci.net/1/205/1997/hess-1-205-1997.html The aggregate description of semi-arid vegetation with precipitation-generated soil moisture heterogeneity.] Hydrol. Earth Syst. Sci., 1, 205-212, DOI: 10.5194/hess-1-205-1997.
 
*Yu, Z.B., Fu, X.L., Luo, L.F., Lu, H.S., Ju, Q., Liu, D., Kalin, D.A., Huang, D., Yang, C.G., Zhao, LL. 2014. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter.  Water Resour. Res., 50(8), 6950-6965, DOI: 10.1002/2012WR013473.
 
*Yu, Z.B., Fu, X.L., Luo, L.F., Lu, H.S., Ju, Q., Liu, D., Kalin, D.A., Huang, D., Yang, C.G., Zhao, LL. 2014. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter.  Water Resour. Res., 50(8), 6950-6965, DOI: 10.1002/2012WR013473.
 
*Yuan, Y.P., Nie, W.M., McCutcheon, SC., Taguas, E.V. 2014. Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona . Hydrol. Process., 28(3), 774-783, DOI: 10.1002/hyp.9592.
 
*Yuan, Y.P., Nie, W.M., McCutcheon, SC., Taguas, E.V. 2014. Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona . Hydrol. Process., 28(3), 774-783, DOI: 10.1002/hyp.9592.

Revision as of 10:54, 17 July 2017

View into the Walnut Gulch Experimental Watershed
Location of the Walnut Gulch Experimental Watershed, Arizona, USA

Location

Located in SE Arizona, USA surrounding the historic city of Tombstone, the 150 km² Walnut Gulch Experimental Watershed was established in the early 1950's to study the role of watershed treatments on downstream water yield. The site was deemed typical of the black grama grass-brush dominated areas of southern New Mexico and Arizona.

Catchment size

150 km²

Climate

Semiarid

Geology

Vegetation/Land use

Black grama grass-brush dominated areas

Context of investigation

The role of watershed treatments on downstream water yield

Measurements/Equipment

Precipitation since 1953
Meteorology
Runoff
Sediment transport
Soil Moisture

Links to project webpages

other Links

References

  • Amitai, E., Unkrich, C.L., Goodrich, D.C., E. Habib, E., Thill, B., 2012: Assessing Satellite- Based Rainfall Estimates in Semiarid Watersheds Using the USDA-ARS Walnut Gulch Gauge Network and TRMM PR. J. Hydrometeor., 13, 1579–1588, DOI: 10.1175/JHM-D-716 12-016.1.
  • Costa, A.C., Bronstert, A., de Araújo, J.C. 2012. A channel transmission losses model for different dryland rivers. Hydrol. Earth Syst. Sci., 16, 1111-1135, DOI: 10.5194/hess-16-1111-2012.
  • Emmerich, W.E., Verdugo, C.L. 2008. Long-term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res., 44, W05S09, DOI: 10.1029/2006WR005693.
  • Das, N.N., Mohanty, B.P., Cosh, M.H., Jackson, T.J., 2008. Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04. Remote Sensing of Environment, 112(2), 415-429, DOI: 10.1016/j.rse.2006.10.027.
  • Gao, P., Nearing, M.A., Commons, M. 2013. Suspended sediment transport at the instantaneous and event time scales in semiarid watersheds of southeastern Arizona, USA. Water Resour. Res., 49(10), 6857-6870, DOI: 10.1002/wrcr.20549.
  • Goodrich, D. C., Keefer, T.O., Unkrich, C.L., Nichols, M.H., Osborn, H.B., Stone, J.J., Smith, J.R., 2008. Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, DOI: 10.1029/2006WR005782.
  • Houser, P., Gupta, H.V., Shuttelworth, W.J., Famiglietti, J.S. 2001. Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 106, D24, 33421-33433, DOI: 10.1029/2000JD900803.
  • Keefer, T.O., Renard, K.G., Goodrich, D.C., Heilman, P., Unkrich, C., 2016. Quantifying extreme rainfall events and their hydrologic response in southeastern Arizona. Journal of Hydrologic Engineering, 21(1),04015054, DOI: 10.1061/(ASCE)HE.1943-5584.0001270.
  • Langhans, C., Govers, G., Diels, J., Stone, J.J., Nearing, M.A. 2014. Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth. ADVANCES IN WATER RESOURCES, 69, 65-78, DOI: 10.1016/j.advwatres.2014.03.005.
  • Moran, M.S., Emmerich, W.E., Goodrich, D.C., Heilman, P., Holifield Collins, C.D., Keefer, T.O., Nearing, M.A., Nichols, M.H., Renard, K.G., Scott, R.L., Smith, J.R., Stone, J.J., Unkrich, C.L., Wong, J., 2008. Preface to special section on fifty years of research and data collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed, Water Resour. Res., 44, W05S01, DOI: 10.1029/2007WR006083.
  • Nearing, M.A., Nichols, M.H., Stone, J.J., Renard, K.G., Simanton, J.R., 2007. Sediment yields from unit-source semiarid watersheds at Walnut Gulch. Water Resour. Res., 43(6), W06426, DOI: 10.1029/2006WR005692.
  • Nichols, M.H., Nearing, M.A., Polyakov, V.O., Stone, J.J. 2013. A sediment budget for a small semiarid watershed in southeastern Arizona, USA. GEOMORPHOLOGY 180, 137-145, DOI: 10.1016/j.geomorph.2012.10.002.
  • Nichols, M.H., Nearing, M., Hernandez, M., Polyakov, V.O., 2016. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography. Geomorphology, 265, 107-116, DOI: 10.1016/j.geomorph.2016.05.001.
  • Pelletier, J.D., Nichols, M.H., Nearing, M.A. , 2016. The influence of Holocene vegetation changes on topography and erosion rates: A case study at Walnut Gulch Experimental Watershed, Arizona. Earth Surface Dynamics, 4(2), 471-488, DOI: 10.5194/esurf-4-471-2016.
  • Polyakov, V.O., Nearing, M.A., Hawdon, A.A., Wilkinson, S.N., Nichols, M.H. 2013. Comparison of two stream gauging systems for measuring runoff and sediment yield for a semi-arid watershed. EARTH SURFACE PROCESSES AND LANDFORMS 38(4), 383-390, DOI: 10.1002/esp.3287.
  • Sabzevari, T., Noroozpour, S. 2014. Effects of hillslope geometry on surface and subsurface flows. HYDROGEOLOGY JOURNAL 22(7), 1593-1604, DOI: 10.1007/s10040-014-1149-6.
  • Scott, R.L. 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology 150, 219–225, DOI: 10.1016/j.agrformet.2009.11.002.
  • Scott, R.L., Biederman, J.A., Hamerlynck, E.P., Barron-Gafford, G.A., 2015. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. Journal of Geophysical Research G: Biogeosciences, 120(12), 2612-2624, DOI: 10.1002/2015JG003181.
  • Sivandran, G., Bras, R.L. 2013. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed. Water Resour. Res., 49(6), 3292-3305, DOI: 10.1002/wrcr.20245.
  • Sivandran, G., Bras, R.L. 2012. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment. Water Resour. Res., 48, W12525, DOI: 10.1029/2012WR012055.
  • Stillman, S., Ninneman, J.,, Zeng, X.B., Franz, T., Scott, R.L., Shuttleworth, W.J., Cummins, K. 2014. Summer Soil Moisture Spatiotemporal Variability in Southeastern Arizona. J. Hydrometeor., 15(4), 1473-1485.DOI: http://dx.doi.org/10.1175/JHM-D-13-0173.1.
  • Stillman, S., Zeng, X.B., Shuttleworth, WJ., Goodrich, D.C., Unkrich, C.L., Zreda, M. 2013. Spatiotemporal Variability of Summer Precipitation in Southeastern Arizona. J. Hydrometeor., 14(6), 1944-1951, DOI: 10.1175/JHM-D-13-017.1.
  • Stillman, S., Zeng, X., Bosilovich, M.G., 2016. Evaluation of 22 precipitation and 23 soil moisture products over a semiarid area in Southeastern Arizona. J. Hydrometeor., 17(1), 211-230, DOI: 10.1175/JHM-D-15-0007.1.
  • Tabatabaeenejad, A., Burgin, M., Duan, X.Y., Moghaddam, M., 2015. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 53(2), 645-658, DOI: 10.1109/TGRS.2014.2326839.
  • White, C.B., Houser, P.R., Arain, A.M., Yang, Z.L., Syed, K., Shuttleworth, W.J. 1997. The aggregate description of semi-arid vegetation with precipitation-generated soil moisture heterogeneity. Hydrol. Earth Syst. Sci., 1, 205-212, DOI: 10.5194/hess-1-205-1997.
  • Yu, Z.B., Fu, X.L., Luo, L.F., Lu, H.S., Ju, Q., Liu, D., Kalin, D.A., Huang, D., Yang, C.G., Zhao, LL. 2014. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resour. Res., 50(8), 6950-6965, DOI: 10.1002/2012WR013473.
  • Yuan, Y.P., Nie, W.M., McCutcheon, SC., Taguas, E.V. 2014. Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona . Hydrol. Process., 28(3), 774-783, DOI: 10.1002/hyp.9592.