Wüstebach long-term experimental catchment

From Experimental Hydrology Wiki
Jump to navigation Jump to search

The Wüstebach long-term experimental catchment

Wüstebach map.jpg


The Wüstebach catchment is located in the German low mountain ranges within the borders of the Eifel National Park (50°30’ N, 6° 19’ E) near the German-Belgian border.

Catchment size

The catchment area is 38.5 ha.


The catchment belongs to the temperate oceanic climate region. The climate can be characterized as humid with a mean annual temperature of 8.2 °C and a mean annual precipitation of 1310 mm/yr from 1991 to 2013 (data from meteorological station Kalterherberg (German Weather Service)). Precipitation tends to be higher in winter than in summer.


The geology is dominated by Devonian shales with occasional sandstone inclusions, which is covered by a periglacial solifluction layer of about 1–2 m thickness. Cambisols and Planosols have developed on the hillslopes, whereas Gleysols and Histosols (half-bogs) have formed under the influence of groundwater in the valley. The main soil texture is silty clay loam with a medium to high fraction of coarse material and the litter layer has a thickness between 0.5 and 14 cm (mean: 5.8 cm).


The elevation of the catchment ranges from 595 to 628 m a.s.l. The average slope is 3.6% and the maximum slope is 10.4%.

Vegetation/Land use

Norway spruce (Picea abis L.) and Sitka spruce (Picea sitchensis) are the dominating vegetation within the catchment with an average density of 370 trees/ha. Currently, forest management in the Eifel National Park promotes the natural regeneration of near-natural beech forest from spruce monoculture forest that was originally established solely for timber production. For the Wüstebach catchment, a spatially explicit and coherent clear-felling area was selected that will significantly influence the biogeochemical parameters and functioning of the forest ecosystem. During late summer/early autumn of 2013, trees were almost completely removed in an area of 9 ha, which corresponds to approximately 23% of the total catchment area. The deforestation measure focused on the wettest part of the catchment near the main Wüstebach stream, and the affected soils were mainly Gleysols and some adjacent Cambisols.

Context of investigation

The catchment is part of the TERENO Lower Rhine Valley-Eifel observatory. The deforestation experiment is an example for such an integrated monitoring and analysis approach. The expected strong effects will facilitate the detection of associated system changes in response to the imposed disturbance and will provide a unique insight into the recovery and regeneration of forest systems.


In the framework of TERENO, the Wüstebach catchment has been instrumented between 2007 and 2010 with a large variety of measurement equipment to obtain information about hydrological, chemical, and meteorological states and fluxes [Bogena et al., 2015]. The basic infrastructure and monitoring consists of:

- Atmospheric processes: The main meteorological measurements are concentrated around a 38 m high tower that was installed in the northwestern part of the catchment. At 12 m above the forest canopy, measurements of the 3D wind vector, temperature, humidity and CO2 concentration are taken at a frequency of 20 Hz. Wind direction and speed is measured using a Campbell Scientific CSAT3 sonic anemometer. Gas concentrations are determined using a LiCor Li-7500 open-path gas analyzer, installed 15 cm north of the anemometer. In September 2013, a second EC station was installed in the center of the clear-felling area at a height of 2.5 m above the surface to minimize the footprint area. The equipment of this EC station is identical to the equipment installed at the meteorological tower. Three raingauges and 150 totalisators (weekly sampling) are installed to monitor spatial rainfall patterns.

- Soil moisture: The wireless soil moisture sensor network SoilNet enables the measurement of catchment scale soil water content pattern dynamics in the Wüstebach catchment. The SoilNet in Wüstebach consists of 150 sensor units with 600 ECH2O EC-5 and 300 ECH2O 5TE sensors (Decagon Devices, Pullman, WA, USA) buried at 5 cm, 20 cm, and 50 cm. Two sensors at each depth measure soil moisture content every 15 minutes. In addition to the in-situ soil moisture monitoring, a CRS-1000 cosmic-ray soil moisture neutron probe (CRNP, Hydroinnova LLC, Albuquerque, NM, USA) is installed in the center of the Wüstebach catchment. The CRNP non-invasively measures the integral soil moisture state of the catchment by counting fast neutrons in hourly interval (measurement footprint has a radius of ~200 m).

- Soil respiration: Two measurement transects were installed in the Wüstebach catchment in 2006 to measure soil respiration at 35 locations with a separation of 10 m. At each location, PVC collars (Ø 20 cm) were inserted 5-8 cm into the forest floor. This set-up was extended with an additional 49 measurement points in 2008 in the center of the deforestation area in a grid configuration. Soil respiration was measured weekly at each transect location using a closed dynamic chamber system (LI-8100-101, Licor Biosciences Ltd), along with soil temperature measurements at 5 and 11 cm depth and soil moisture measurements (integral from 0 to 15 cm).

- Soil chemistry: Due to the strong link between water and biogeochemical nutrient fluxes, it is expected that the deforestation will alter the soil chemical status. Therefore, soil chemical properties before and after deforestation have been determined and evaluated using a series of soil sampling campaigns (see Bogena et al., 2015 for more details).

- Water balance: Six lysimeters (surface area: 1.0 m²; depth: 1.5 m) were installed in the Wüstebach catchment to determine precipitation, actual evapotranspiration (resolution of 1 mm), and the change in soil water storage. The amount of water leaving the bottom of the lysimeter (leachate) is also determined (resolution of 0.1 mm, 1 minute interval). All lysimeters were filled with undisturbed soil monoliths from the Wüstebach site in a way that avoids compaction and other disturbances. Vegetation on the lysimeters is natural grassland without management (e.g. no fertilization and cutting). The lower boundary condition of each lysimeter is controlled using parallel suction pipes that were installed at the end of the filling procedure.

- Runoff: Discharge is measured at three runoff stations (15 min frequency), all equipped with a combination of a V-notch weir for low flow measurements and a Parshall flume to measure normal to high flows.

- Water quality: Weekly grab samples for water chemical analyses are collected at several locations along the Wüstebach stream. In addition, weekly samples are taken from the main tributaries of the Wüstebach stream and from the stream in the reference catchment. Furthermore, multi-probes (YSI 6820, YSI Inc., USA) that measure water temperature, pH and electrical conductivity every 15 min and auto-samplers (AWS 2002, Ecotech, Germany) with an hourly sampling interval have been installed at all runoff gauging stations to capture fast changes in water chemistry during discharge events. Finally, water temperature, pH, redox potential and electrical conductivity are also measured manually during the weekly sampling campaigns using field instruments (WTW, Xylem Inc., USA). All samples collected for analysis of water chemistry are filtered in the laboratory (0.45 µm) before major anions and cations are measured using IC (Cl-, NO3-, SO4-, NH4+, PO42-) and ICP-OES (Al3+, Fetot, Ca2+, Mg2+, Na+, K+). Concentrations of ammonium and phosphate are typically very low and near or below the detection limit (0.06 and 0.08 mg/L) and thus not presented here. Spectral UV absorption as an indicator of organic carbon is measured as SAK254 on a spectrophotometer (Varian), and dissolved organic carbon (DOC) concentration is determined as non-purgeable organic carbon (Shimadzu TOC-VCPN) on the filtered sample

- Groundwater: 9 piezometers were installed within the catchment (mainly in riperian zone) where groundwater level are continuously monitored.

- Vegetation: Two sites were selected to measure sapflow fluxes as a proxy for tree transpiration. The first site is located near the Wüstebach River and is influenced by groundwater fluctuations. The second site is located at the hillslope and is unaffected by groundwater. At each site, three trees were instrumented with sapflow sensors to infer transpiration fluxes of the spruce trees. Sap flow is measured using improved Granier sensors with four needles (Ecomatik SF-L sensors; Ecomatik, 2005).

- Stable Isotopes: Weekly precipitation samples for isotopic analysis are collected from a wet deposition collector at the TERENO meteorological station Schöneseiffen (620 m a.s.l., 3.5 km northeast of the Wüstebach catchment). The samples are collected in 2.3 liter HDPE bottles, which are cooled in-situ by a standard refrigerator. The isotopic analysis is carried out using Isotope-Ratio Mass Spectrometry (IRMS) with high-temperature pyrolysis Oxygen and hydrogen stable isotope values are reported as delta values (18O, 2H) against Vienna Standard Mean Ocean Water (VSMOW) on the SMOW scale using laboratory standards calibrated against international standards (VSMOW, SLAP2 and GISP) for calibration.

Data from the Wüstebach catchment can be downloaded here.

Modelling activities

In order to better understand the hydrological processes, several modelling efforts have been undertaken at the Wüstebach catchment:

Parflow-CLM: ParFlow-CLM is a grid based, fully integrated groundwater flow model that solves the Richards’ equation in 3D. The coupled land surface model CLM simulates the land surface energy mass balance components and thus PCLM has a more detailed physical description than HGS and MSHE that use potential evapotranspiration as model input. PCLM simulates 2D surface flow by solving the kinematic wave equation. The vertical discretization of the Wüstebach model in ParFlow-CLM consists of 2.5 cm thick layers from terrain to bedrock. The lateral discretization of the structured grid is 10 m. Please refer to Fang et al. (2015) and (2016) for more information.

HydroGeoSphere: HydroGeoSphere is a fully integrated hydrological model that solves the 3D Richards’ equation for subsurface flow with the numerical finite difference method. Surface and channel flow are expressed by 2D and 1D diffusion wave approximations of the Saint Venant equation, respectively. The model domain of the Wüstebach is discretized with a triangulated network containing 805 nodes which represents an average resolution of 25 m. Additional 164 nodes are added to the riparian zone for a refined description of the channel topography. Please refer to Cornelissen et al. (2013) for more information.

MIKE-SHE: MIKE-SHE is a grid based hydrological model which comprises coupled modules that describe 3D groundwater flow (finite difference), 1D unsaturated flow (Richards’equation), 2D overland flow and river routing (Table 3). The model is not considered fully integrated; however full coupling between the modules is performed at each time step. For the Wüstebach model setup the unsaturated zone is discretized with an increasing thickness of the numerical layers with depth (5 cm to 20 cm). The lateral discretization of the structured grid is 10 m. Please refer to Koch et al. (2016) for more information.

TRANSEP: The conceptual rainfall-runoff transfer function hydrograph separation model TRANSEP was used to determine of stream water transit time distributions. Please refer to Stockinger et al. (2014) for more information.

DYNAMITE: The conceptual rainfall-runoff DYNAMITE was used to investigate the reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions. Please refer to Hrachowitz et al. (2021) for more information.

Links to project webpages


  • Altdorf, D., C. v. Hebel, N. Borchard, J v. d. Kruk, H.R. Bogena, H. Vereecken and J.A. Huisman (2017): Potential of catchment-wide soil water content mapping using electromagnetic induction in a forest ecosystem. Environmental Earth Science 76: 111. DOI: 10.1007/s12665-016-6361-3
  • Alvarez, M., K. Seis and B.M. Möseler (2012): Floristic composition and spatial distribution of germinable seeds in a spruce plantation. Annals of forest science 69: 557-567. DOI: 10.1007/s13595-011-0174-z
  • Andreasen, M., K.H. Jensen, M. Zreda, D. Desilets, H. Bogena and M.C. Looms (2016): Modeling cosmic-ray neutron field measurements. Water Resour. Res. 52. DOI: 10.1002/2015WR018236
  • Araki, R., F. Branger, I. Wiekenkamp and H. McMillan (2022): A signature-based approach to quantify soil moisture dynamics under contrasting land-uses. Hydrological Processes, 36(4): e14553. DOI: 10.1002/hyp.14553
  • Baatz R., H. Bogena, H.-J. Hendricks Franssen, J.A. Huisman, C. Montzka and H. Vereecken (2015): Development of an empirical vegetation correction for soil water content quantification using cosmic-ray probes. Water Resour. Res., 51. DOI: 10.1002/2014WR016443
  • Baatz, R., H.-J. Hendricks Franssen, X. Han, T. Hoar, H. Bogena and H. Vereecken (2017): Evaluating the value of a network of cosmic-ray probes for improving land surface modeling. Hydrol. Earth Syst. Sci. 21: 2509-2530. DOI: 10.5194/hess-21-2509-2017
  • Bogena, H., E. Borg, A. Brauer, P. Dietrich, I. Hajnsek, I. Heinrich, R. Kiese, R. Kunkel, H. Kunstmann, B. Merz, E. Priesack, T. Pütz, H.P. Schmid, U. Wollschläger, H. Vereecken and S. Zacharias (2016): TERENO: German network of terrestrial environmental observatories. Journal of large-scale research facilities 2: A52. DOI: 10.17815/jlsrf-2-98
  • Bogena, H.R., J.A. Huisman, R. Baatz, R., H.-J. Hendricks Franssen and H. Vereecken (2013): Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resour. Res., 49 (9): 5778-5791. DOI: 10.1002/wrcr.20463
  • Bogena, H.R., M. Herbst, J.A. Huisman, U. Rosenbaum, A. Weuthen and H. Vereecken (2010): Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J., 9 (4): 1002-1013. DOI: 10.2136/vzj2009.0173
  • Bogena, H.R., R. Bol, N. Borchard, N. Brüggemann, B. Diekkrüger, C. Drüe, J. Groh, N. Gottselig, S.J. Huisman, A. Lücke, A. Missong, B. Neuwirth, T. Pütz, M. Schmidt, M. Stockinger, W. Tappe, L. Weihermüller, I. Wiekenkamp and H. Vereecken (2015): A terrestrial observatory approach for the integrated investigation of the effects of deforestation on water, energy, and matter fluxes. Science China: Earth Sciences 58(1): 61-75. DOI: 10.1007/s11430-014-4911-7
  • Bogena, H.R., C. Montzka, J.A. Huisman, A. Graf, M. Schmidt, M. Stockinger, C. von Hebel, H.J. Hendricks-Franssen, J. van der Kruk, W. Tappe, A. Lücke, R. Baatz, R. Bol, J. Groh, T. Pütz, J. Jakobi, R. Kunkel, J. Sorg and H. Vereecken (2018): The TERENO-Rur Hydrological Observatory: A Multiscale Multi-compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone J. 17(1): 1-22. DOI: 10.2136/vzj2018.03.0055
  • Bogena, H.R., M. Stockinger and A. Lücke (2020): Long-term stable water isotope data for the investigation of deforestation effects on the hydrological system of the Wüstebach catchment, Germany. Hydrol. Proc. 35:e14006. DOI: 10.1002/hyp.14006
  • Bogena, H.R., M. Schrön, J. Jakobi, P. Ney, S. Zacharias, M. Andreasen, R. Baatz, … and H. Vereecken (2022): COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors. Earth Syst. Sci. Data 14: 1125–1151. DOI: 10.5194/essd-14-1125-2022
  • Boeing, F., O. Rakovech, R. Kumar, L. Samaniego, M. Schrön, A. Hildebrandt, S. Thober, S. Müller, S. Zacharias, H. Bogena, K. Schneider, R. Kiese and A. Marx (2022): High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrol. Earth Syst. Sci. 26: 5137–5161. DOI: 10.5194/hess-26-5137-2022
  • Bol, R., A. Lücke, W. Tappe, S. Kummer, M. Krause, S. Weigand, T. Pütz and H. Vereecken (2015): Spatio-temporal Variations of Dissolved Organic Matter in a German Forested Mountainous Headwater Catchment. Vadose Zone J. 14(4). DOI: 10.2136/vzj2015.01.0005
  • Bossa, A.Y. and B. Diekkrüger (2014): Spatio-temporal variability of soil respiration in a spruce-dominated headwater catchment in western Germany. Biogeosciences, 11(15), 4235-4249.
  • Burger, D. J., Vogel, J., Kooijman, A. M., Bol, R., de Rijke, E., Schoorl, J., ... & Gottselig, N. (2021): Colloidal catchment response to snowmelt and precipitation events differs in a forested headwater catchment. Vadose Zone Journal 20(3): e20126. DOI: 10.1002/vzj2.20126
  • Cornelissen, T., B. Diekkrueger and H. Bogena (2013): Using HydroGeoSphere in a forested catchment: How does spatial resolution influence the simulation of spatio-temporal soil moisture variability? Procedia Environmental Sciences, 19: 198-207. DOI: 10.1016/j.proenv.2013.06.022
  • Cornelissen, T., B. Diekkrüger and H.R. Bogena (2016): Transferring small scale parameterization to improve mesoscale catchment modelling. Water 8(5), 202. DOI: 10.3390/w8050202
  • Fang, Z., H.R. Bogena, S. Kollet, J. Koch and H. Vereecken (2015): Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis. J. Hydrol.. DOI: 10.1016/j.jhydrol.2015.08.011
  • Fang, Z., H.R. Bogena, S. Kollet, J. Koch and H. Vereecken (2016): Scale dependent parameterization of soil hydraulic conductivity in the 3D simulation of hydrological processes in a forested headwater catchment. J. Hydrol. 536: 365–375. DOI: 10.1016/j.jhydrol.2016.03.020
  • George, J.P., Yang, W., Kobayashi, H., Biermann, T., Carrara, A., Cremonese, E., ... and Pisek, J. (2021): Method comparison of indirect assessments of understory leaf area index (LAIu): A case study across the extended network of ICOS forest ecosystem sites in Europe. Ecological Indicators 128: 107841. DOI: 10.1016/j.ecolind.2021.107841.
  • Gottselig, N., R. Bol, V. Nischwitz, H. Vereecken, W. Amelung and Klumpp, E. (2014): Distribution of phosphorus-containing fine colloids and nanoparticles in stream water of a forest catchment. Vadose Zone Journal 13(7): vzj2014.01.0005. DOI: 10.2136/vzj2014.01.0005
  • Gottselig N. and I. Wiekenkamp, L. Weihermüller, N. Brüggemann, A.E. Berns, H.R. Bogena, N. Borchard, E. Klumpp, A. Lücke, A. Missong, T. Pütz, H. Vereecken, J.A. Huisman and R. Bol (2017): Soil biogeochemistry in a forested headwater catchment – A three dimensional view. J. Environ. Qual. 45(6): 210-218. DOI: 10.2134/jeq2016.07.0276.
  • Gottselig, N., V. Nischwitz, T. Meyn, W. Amelung, R. Bol, C. Halle, .. and E. Klumpp (2017): Phosphorus binding to nanoparticles and colloids in forest stream waters. Vadose Zone Journal 16(3).
  • Gottselig, N., W. Amelung, J.W. Kirchner, R. Bol, W. Eugster, S.J. Granger, ... and H. Laudon (2017): Elemental composition of natural nanoparticles and fine colloids in European forest stream waters and their role as phosphorus carriers. Global Biogeochemical Cycles 31(10): 1592-1607.
  • Graf, A., H.R. Bogena, C. Drüe, H. Hardelauf, T. Pütz, G. Heinemann and H. Vereecken (2014): Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment, Water Resour. Res., 50: 4837–4857. DOI: 10.1002/ 2013WR014516
  • Graf, A., A. Klosterhalfen, N. Arriga, C. Bernhofer, H. Bogena, … and H. Vereecken (2020): Anomalies in energy partitioning and water use efficiency at ecosystem sites in the European drought year 2018. Phil. Trans. Roy. Soc. 375(1810). DOI: 10.1098/rstb.2019.0524
  • Groh, J., C. Stumpp, L. Lücke, T. Pütz, J. Vanderborght and H. Vereecken (2018): Inverse estimation of soil hydraulic and transport parameters of layered soils from water stable isotope and lysimeter data. Vadose Zone J. 17(1).
  • Groh, J., T. Pütz, H.H. Gerke, J. Vanderborght and H. Vereecken (2019): Quantification and prediction of nighttime evapotranspiration for two distinct grassland ecosystems. Water Resour. Res. 55(4): 2961-2975.
  • Hasan S., C. Montzka, C. Rüdiger, M. Ali, H. Bogena and H. Vereecken (2014): Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. J. Photogramm. Remote Sens. 91: 59-71. DOI: 10.1016/j.isprsjprs.2014.02.005
  • Heil, J., S. Liu, H. Vereecken and N. Brüggemann (2015): Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biology and Biochemistry, 84: 107-115.
  • Heistermann, M., H. Bogena, T. Francke, A. Güntner, J. Jakobi, D. Rasche, M. Schrön, … and S. Oswald (2022): Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach. Earth Syst. Sci. Data 14: 2501–2519. DOI: 10.5194/essd-14-2501-2022
  • Hövel, A., C. Stumpp, H. Bogena, A. Lücke, P. Strauss, G. Blöschl and M. Stockinger (2023): Repeating patterns in runoff time series: A basis for exploring hydrological similarity of precipitation and catchment wetness conditions. J. Hydrology. Accepted.
  • Hrachowitz, M., M. Stockinger, M. Coenders-Gerrits, R. van der Ent, H. Bogena, A. Lücke and C. Stumpp (2021): Deforestation reduces the vegetation-accessible water storage in the unsaturated soil and affects catchment travel time distributions and young water fractions. Hydrol. Earth Syst. Sci. 25: 4887–4915. DOI: 10.5194/hess-25-4887-2021
  • Huang, J., A.R. Desai, J. Zhu, A.E. Hartemink, P.C. Stoy, S.P. Loheide, H.R. Bogena, Y. Zhang, Z. Zhang and F. Arriaga (2020): Retrieving heterogeneous surface soil moisture at 100 m across the globe via fusion of remote sensing and land surface parameters. Front. Water 2:578367. DOI: 10.3389/frwa.2020.578367
  • Iwema, J., R. Rosolem, R. Baatz, T. Wagener and H. R. Bogena (2015): Investigating temporal field sampling strategies for site-specific calibration of three soil moisture – neutron intensity parameterisation methods. Hydrol. Earth Syst. Sci. 19: 3203–3216. DOI: 10.5194/hess-19-3203-2015
  • Keller, N., R. Bol, B. Marschner and S. Heinze (2023): Catchment scale spatial distribution of soil enzyme activities in a mountainous German coniferous forest. Soil Biology and Biochemistry 177: 108885. DOI: 10.1016/j.soilbio.2022.108885
  • Klosterhalfen, A., A.F. Moene, M. Schmidt, T.M. Scanlon, H. Vereecken and A. Graf (2019): Sensitivity analysis of a source partitioning method for H2O and CO2 fluxes based on high frequency eddy covariance data: Findings from field data and large eddy simulations. Agricultural and Forest Meteorology 265: 152-170.
  • Klosterhalfen, A., A. Graf, N. Brüggemann, C. Drüe, O. Esser, M.P. González-Dugo, ... and H. Vereecken (2019): Source partitioning of H2O and CO2 fluxes based on high-frequency eddy covariance data: a comparison between study sites. Biogeosciences 16(6): 1111-1132. DOI: 10.5194/bg-16-1111-2019
  • Koch, J., S. Stisen, Z. Fang, H.R. Bogena, T. Cornelissen, B. Diekkrüger and S. Kollet (2016): Inter-comparison of three distributed hydrological models with respect to the seasonal variability of soil moisture patterns at a small forested catchment. J. Hydrol. 533: 234-249. DOI: 10.1016/j.jhydrol.2015.12.002
  • Korres, W., T.G. Reichenau, P. Fiener, C.N. Koyama, H.R. Bogena, T. Cornelissen, R. Baatz, M. Herbst, B. Diekkrüger, H. Vereecken, and K. Schneider (2015): Spatio-temporal soil moisture patterns - a meta-analysis using plot to catchment scale data. J. Hydrol. 520: 934-946. DOI: 10.1016/j.jhydrol.2014.11.042
  • Lehmkuhl, F., Loibl, D., & Borchardt, H. (2010). Geomorphological map of the Wüstebach (Nationalpark Eifel, Germany)—an example of human impact on mid-European mountain areas. Journal of Maps 6(1): 520-530. DOI: 10.4113/jom.2010.1118
  • Lehmann, P., S. Bickel, Z. Wei and D. Or (2020): Physical constraints for improved soil hydraulic parameter estimation by pedotransfer functions. Water Resources Research 56(4): e2019WR025963. DOI: 10.1029/2019WR025963
  • Liu, S., M. Herbst, R. Bol, N. Gottselig, T. Pütz, D. Weymann, I. Wiekenkamp, H. Vereecken and N. Brüggemann (2016): The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest, Geochimica et Cosmochimica Acta 178: 76-86. DOI: 10.1016/j.gca.2016.01.026
  • Liu, S., M. Schloter and N. Brüggemann (2018): Accumulation of NO2- during periods of drying stimulates soil N2O emissions during subsequent rewetting. European journal of soil science, 69(5), 936-946.
  • Liu, S., M. Schloter, R. Hu, H. Vereecken and N. Brüggemann (2019): Hydroxylamine contributes more to abiotic N2O production in soils than nitrite. Frontiers in Environmental Science 7: 47. DOI: 10.3389/fenvs.2019.00047
  • Missong, A., Bol, R., Willbold, S., Siemens, J. and Klumpp, E. (2016): Phosphorus forms in forest soil colloids as revealed by liquid-state 31P-NMR. J. Plant Nutr. Soil Sci., 179: 159–167. DOI: 10.1002/jpln.201500119.
  • Montzka, C., H. Bogena, L. Weihermueller, F. Jonard, M. Dimitrov, C. Bouzinac, J. Kainulainen, J.E. Balling, J. Vanderborght and H. Vereecken (2011): Radio brightness validation on different spatial scales during the SMOS validation campaign 2010 in the Rur catchment, Germany. International Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 3760-3763. DOI: 10.1109/IGARSS.2011.6050043
  • Montzka, C., S. Hasan, H. Bogena, I. Hajnsek, R. Horn, T. Jagdhuber, A. Reigber, N. Hermes, C. Rudiger and H. Vereecken (2012): Active and passive airborne microwave remote sensing for soil moisture retrieval in the Rur catchment, Germany. International Geoscience and Remote Sensing Symposium (IGARSS): 6956-6959, 2012 IEEE International, 3101-3104. DOI: 10.1109/IGARSS.2012.6352562.
  • Montzka, C., H.R. Bogena, L. Weihermüller, F. Jonard, C. Bouzinac, J. Kainulainen, J.E. Balling, A. Loew, A., J.T. Dall'Amico, E. Rouhe, J. Vanderborght and H. Vereecken (2013): Brightness temperature and soil moisture validation at different scales during the SMOS validation campaign in the Rur and Erft catchments, Germany. IEEE Transactions on Geoscience and Remote Sensing 51(3): 1728-1743.
  • Montzka, C., H. Bogena, T. Jagdhuber, I. Hajnsek, R. Horn, A. Reigber, S. Hasan, C. Rüdiger and H. Vereecken (2014): Airborne active and passive L-band microwave remote sensing – a test bed for SMAP fusion algorithms. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS): 1-4.
  • Montzka, C., T. Jagdhuber, R. Horn, H. Bogena, I. Hajnsek, A. Reigber and H. Vereecken (2016): Evaluation of SMAP fusion algorithms with airborne active and passive L-band microwave remote sensing. IEEE Transactions on Geoscience and Remote Sensing 54(7): 3878-3889, 10.1109/TGRS.2016.2529659.
  • Montzka, C., H.R. Bogena, M. Zreda, A. Monerris, R. Morrison, S. Muddu and H. Vereecken (2017): Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes. Remote Sensing 9(2): 103. DOI: 10.3390/rs9020103.
  • Montzka, C., H.R. Bogena, M. Zreda, A. Monerris, R. Morrison, S. Muddu and H. Vereecken (2017): Cosmic-ray neutron probes for satellite soil moisture validation. Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International: 3957-3960. DOI: 10.1109/IGARSS.2017.8127866.
  • Neuwirth, B., I. Ra.bbel, J. Bendix, H.R. Bogena and B. Thies (2021): The European heat wave 2018: Dendroecological response of oak and spruce in Western Germany. Forests 12:283. DOI:10.3390/f12030283
  • Ney, P., A. Graf, H. Bogena, B. Diekkrüger, C. Drüe, O. Esser, G. Heinemann, A. Klosterhalfen, K. Pick, T. Pütz, M. Schmidt, V. Valler and H. Vereecken (2019): CO2 Fluxes Before and After Partially Deforestation of a Central European Spruce Forest. Agricultural and Forest Meteorology.
  • Nischwitz, V., N. Gottselig, A. Missong, T. Meyn and E. Klumpp (2016): Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts. Journal of Analytical Atomic Spectrometry 31(9): 1858-1868.
  • Pisek, J., A. Erb, L. Korhonen, T. Biermann, A. Carrara, E. Cremonese, ... and C. Vincke (2021): Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences 18(2): 621-635. DOI: 10.5194/bg-18-621-2021
  • Placzkowska, E., K. Mostowik, H.R. Bogena and M. Leuchner (2023): The impact of partial deforestation on solute fluxes and stream water ionic composition in a headwater catchment. Water 15: 107. DOI: 10.3390/w15010107
  • Post, H., J.A. Vrugt, A. Fox, H. Vereecken and H.J. Hendricks-Franssen (2017): Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites. Journal of Geophysical Research: Biogeosciences 122(3): 661-689.
  • Post, H., H.J. Hendricks Franssen, X. Han, R. Baatz, C. Montzka, M. Schmidt and H. Vereecken (2018): Evaluation and uncertainty analysis of regional-scale CLM4. 5 net carbon flux estimates. Biogeosciences 15(1): 187-208.
  • Pütz, T., R. Kiese, U. Wollschläger, J. Groh, H. Rupp, S. Zacharias, ... and H. Vereecken (2016): TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environmental Earth Sciences 75: 1-14. DOI: 10.1007/s12665-016-6031-5
  • Qu, W., H.R. Bogena., J.A. Huisman, J. Vanderborght, M. Schuh, E. Priesack and H. Vereecken (2015): Predicting sub-grid variability of soil water content from basic soil information. Geophys.Res.Lett. 42: 789–796. DOI: 10.1002/2014GL062496
  • Rabbel, I., B. Diekkrüger, H. Voigt and B. Neuwirth (2016): Comparing ?Tmax determination approaches for Granier-based sapflow estimations. Sensors 16(12): 2042. DOI: 10.3390/s16122042
  • Rabbel, I., H. Bogena, B. Neuwirth and B. Diekkrüger (2018): Using sap flow data to parameterize the Feddes water stress model for Norway spruce. Water 10(3): 279. DOI: 10.3390/w10030279.
  • Rabbel, I., B. Neuwirth, H. Bogena and B. Diekkrüger (2018): Exploring the growth response of Norway spruce (Picea Abies) along a small-scale gradient of soil water supply. Dendrochronologia 52: 123-130. DOI: 10.1016/j.dendro.2018.10.007
  • Reitz, O., A. Graf, M. Schmidt, G. Ketzler and M. Leuchner (2021): Upscaling net ecosystem exchange over heterogeneous landscapes with machine learning. Journal of Geophysical Research: Biogeosciences 126(2): e2020JG005814. DOI: 10.1029/2020JG005814
  • Reitz, O., A. Graf, M. Schmidt, G. Ketzler and M. Leuchner (2022): Effects of Measurement Height and Low-Pass-Filtering Corrections on Eddy-Covariance Flux Measurements Over a Forest Clearing with Complex Vegetation. Boundary-Layer Meteorology 184(2): 277-299. DOI: 10.1007/s10546-022-00700-1
  • Reitz, O., H. Bogena, B. Neuwirth, A. Graf, A. Sanchez-Azofeifa and M. Leuchner (2023): Environmental Drivers of Gross Primary Productivity and Light Use Efficiency of a Temperate Spruce Forest. Journal of Geophysical Research: Biogeosciences 128: e2022JG007197. DOI: 10.1029/2022JG007197
  • Robinson, K.-L., H. R. Bogena, E. Cammeraat and R. Bol (2022): Effects of Deforestation on Dissolved Organic Carbon and Nitrate in Catchment Stream Water revealed by Wavelet Analysis. Front. Water 4:1003693. DOI: 10.3389/frwa.2022.1003693
  • Rosenbaum, U., H.R. Bogena, M. Herbst, J.A. Huisman, T.J. Peterson, A. Weuthen, A. Western and Vereecken, H. (2012): Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res., 48(10), W10544. DOI: 10.1029/2011WR011518
  • Rötzer, K., C. Montzka, H. Bogena, W. Wagner, R. Kidd and H. Vereecken (2014): Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modelling and temporal stability analysis. J. Hydrol. 519: 934-946.
  • Sciuto, G. and B. Diekkrüger (2010): Influence of soil heterogeneity and spatial discretization on catchment water balance modeling. Vadose Zone Journal 9(4): 955-969. DOI: 10.2136/vzj2009.0166
  • Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., & Wollschläger, U. (2013): Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Sciences 19: 543-552. DOI: 10.1016/j.proenv.2013.06.061
  • Schrön, M., M. Köhli, L. Scheiffele, J. Iwema, H.R. Bogena, L. Lv, E. Martini, G. Baroni, R. Rosolem, J. Weimar, J. Mai, M. Cuntz, C. Rebmann, S. Oswald, P. Dietrich, U. Schmidt and S. Zacharias (2017): Spatial sensitivity of cosmic-ray neutron sensors applied to improve calibration and validation. Hydrol. Earth Syst. Sci. 21: 5009–5030. DOI: 10.5194/hess-21-5009-2017
  • Siebers, N., H. Abdelrahman, L. Krause and W. Amelung (2018): Bias in aggregate geometry and properties after disintegration and drying procedures. Geoderma 313: 163-171.
  • Siebers, N., S.L. Bauke, F. Tamburini and W. Amelung (2018): Short-term impacts of forest clear-cut on P accessibility in soil microaggregates: An oxygen isotope study. Geoderma 315: 59-64.
  • Siebers, N. and J. Kruse (2019): Short-term impacts of forest clear-cut on soil structure and consequences for organic matter composition and nutrient speciation: A case study. PLoS One 14(8): e0220476. DOI: 10.1371/journal.pone.0220476
  • Simmer, C., I. Thiele-Eich, M. Masbou, W. Amelung, H. Bogena, S. Crewell, B. Diekkrüger, F. Ewert, H.-J. Hendricks Franssen, J.A. Huisman, A. Kemna, N. Klitzsch, S. Kollet, M. Langensiepen, U. Löhnert, A.S.M.M. Rahman, U. Rascher, K. Schneider, J. Schween, Y. Shao, P. Shrestha, M. Stiebler, M. Sulis, J. Vanderborght, Harry Vereecken, J.v.d. Kruk, G. Waldhoff and T. Zerenner (2015): Monitoring and Modeling the Terrestrial System from Pores to Catchments - the Transregional Collaborative Research Center on Patterns in the Soil-Vegetation-Atmosphere System. Bull. Amer. Meteor. Soc. 96: 1765-1787. DOI: http://dx.doi.org/10.1175/BAMS-D-13-00134.1.
  • Stockinger, M., H. Bogena, A. Lücke, B. Diekkrüger, M. Weiler and H. Vereecken (2014): Seasonal Soil Moisture Patterns Control Transit Time Distributions in a Forested Headwater Catchment. Water Resour. Res., 50. DOI: 10.1002/2013WR014815.
  • Stockinger, M.P., A. Lücke, J.J. McDonnell, B. Diekkrüger, H. Vereecken and H.R. Bogena (2015): Interception effects on stable isotope driven streamwater transit time estimates. Geophys. Res. Lett., 42: 5299–5308. DOI: 10.1002/ 2015GL064622.
  • Stockinger, M.P., H.R. Bogena, A. Lücke, B. Diekkrüger, T. Cornelissen and H. Vereecken (2016): Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution. J. Hydrol.. DOI: 10.1016/j.jhydrol.2016.08.007
  • Stockinger, M.P., A. Lücke, H. Vereecken and H.R. Bogena (2017): Accounting for seasonal isotopic patterns of forest canopy intercepted precipitation in streamflow modeling. J. Hydrol. 555: 31-40. DOI: 10.1016/j.jhydrol.2017.10.003.
  • Stockinger, M.P., H.R. Bogena, A. Lücke, C. Stumpp and H. Vereecken (2019): Time-variability of the fraction of young water in a small headwater catchment. Hydrol. Earth Syst. Sci. 23: 4333–4347. DOI:10.5194/hess-23-4333-2019.
  • Strebel, S., H. Bogena, H. Vereecken and H.-J. Hendricks-Franssen (2022): Coupling the Community Land Model version 5.0 to the parallel data assimilation framework PDAF: Description and applications. Geosci. Model Dev. 15:395-411. DOI:10.5194/gmd-15-395-2022
  • Strebel, S., H. Bogena, H. Vereecken, M. Andreasen, S. Aranda and H.-J. Hendricks-Franssen (2024): Evapotranspiration prediction for European forest sites does not improve with assimilation of in-situ soil water content data. Hydrol. Earth Syst. Sci. (accepted).
  • Sun, Y., B. Wu, I. Wiekenkamp, A.M. Kooijman and R. Bol (2020): Uranium Vertical and Lateral Distribution in a German Forested Catchment. Forests, 11(12): 1351. DOI: 10.3390/f11121351
  • Templer, P.H., J.L. Harrison, F. Pilotto, A. Flores-Díaz, P. Haase, W.H. McDowell, R. Sharif, H. Shibata, D. Blankman, A. Avila, H. Bogena, J. Campbell, T. Dirnböck, W.K. Dodds, M. Hauken, I. Kokorite, K. Lajtha, H. Laudon, H. Meesenburg, A. Robison, M. Rogora, B. Scheler, P. Schleppi, R. Sommaruga, T. Staszewski and L. Teng-Chiu (2022): Effects of Atmospheric Nitrogen Deposition and Climate on Nitrogen Export from Unmanaged Watersheds Around the Globe: An ILTER Data Synthesis. Biogeochemistry 160: 219–241. DOI: 10.1007/s10533-022-00951-7
  • Thomas, F.M., A. Rzepecki, A. Lücke, I. Wiekenkamp, I. Rabbel, T. Pütz and B. Neuwirth (2018): Growth and wood isotopic signature of Norway spruce (Picea abies) along a small-scale gradient of soil moisture. Tree physiology, 38(12), 1855-1870.
  • Uebel, M., M. Herbst and A. Bott (2017): Mesoscale simulations of atmospheric CO2 variations using a high-resolution model system with process-based CO2 fluxes. Quarterly Journal of the Royal Meteorological Society, 143(705), 1860-1876.
  • Vereecken, H., J.A. Huisman, Y. Pachepsky, C. Montzka, J. van der Kruk, H. Bogena, L. Weihermüller, M. Herbst, G. Martinez and J. Vanderborght (2014): On the spatio-temporal dynamics of soil water content at the field scale. J. Hydrol. 516: 76–96. DOI: 10.1016/j.jhydrol.2013.11.061
  • Wang, J., H.R. Bogena, T. Suess, A. Graf, A. Weuthen and N. Brüggemann (2021): Investigating the controls on greenhouse gas emission in a riparian zone using an automated monitoring system. Vadose Zone J. 20(5): e20149. DOI: 10.1002/vzj2.20149
  • Wang, Q., Y. Qu, K.-L. Robinson, H. Bogena, A. Graf, H. Vereecken, A. Tietema and R. Bol (2022): Deforestation alters dissolved organic carbon and sulphate relationships in a mountainous headwater catchment - a wavelet analysis. Front. For. Glob. Change 5:1044447. DOI: 10.3389/ffgc.2022.1044447
  • Wei, J., W. Amelung, E. Lehndorff, M. Schloter, H. Vereecken and N. Brüggemann (2017): N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry 132(3): 325-342.
  • Wei, J., E. Ibraim, N. Brüggemann, H. Vereecken and J. Mohn (2019): First real-time isotopic characterisation of N2O from chemodenitrification. Geochimica et cosmochimica acta 267: 17-32. DOI: 10.1016/j.gca.2019.09.018
  • Wei, J., H. Knicker, Z. Zhou, K.U. Eckhardt, P. Leinweber, H. Wissel, Y. Wenping and N. Brüggemann (2023): Nitrogen immobilization caused by chemical formation of black-and amide-N in soil. Geoderma 429: 116274. DOI: 10.1016/j.geoderma.2022.116274
  • Weigand, S., R. Bol, B. Reichert, A. Graf, I. Wiekenkamp, M. Stockinger, A. Lücke, W. Tappe, H. Bogena, T. Pütz, W. Amelung and H. Vereecken (2017): Spatiotemporal dependency of dissolved organic carbon to nitrate in stream- and groundwater of a humid forested catchment – a wavelet transform coherence analysis. Vadose Zone J. 16(3). DOI: 10.2136/vzj2016.09.0077.
  • Wiekenkamp, I., J.A. Huisman, H. Bogena, A. Graf, H. Lin, C. Drüe and H. Vereecken (2016): Changes in Spatiotemporal Patterns of Hydrological Response after Partial Deforestation. J. Hydrol. 542: 648-661. DOI: 10.1016/j.jhydrol.2016.09.037
  • Wiekenkamp, I., J.A. Huisman, H. Bogena, H. Lin and H. Vereecken (2016): Spatial and Temporal Occurrence of Preferential Flow in a Forested Headwater Catchment. J. Hydrol. 534: 139-149. DOI: 10.1016/j.jhydrol.2015.12.050
  • Wiekenkamp, I., J.A. Huisman, H.R. Bogena and H. Vereecken (2020): Effects of deforestation on water flow in the vadose zone. Water 12(1):35. DOI: 10.3390/w12010035
  • Wu, B., I. Wiekenkamp, Y. Sun, A.S. Fisher, R. Clough, N. Gottselig, H. Bogena, T. Pütz, N. Brüggemann, H. Vereecken and R. Bol (2017): A dataset for three-dimensional distribution of 39 elements in soils of a forested headwater catchment. J. Environ. Qual. 46(6): 1510-1518. DOI: 10.2134/jeq2017.02.0069
  • Zacharias, S., H. Bogena, L. Samaniego, M. Mauder, R. Fuß, T. Pütz, M. Frenzel, M. Schwank, C. Baessler, K. Butterbach-Bahl, O. Bens, E. Borg, A. Brauer, P. Dietrich, I. Hajnsek, G. Helle, R. Kiese, H. Kunstmann, S. Klotz, J.C. Munch, H. Papen, E. Priesack, E., H.P. Schmid, R. Steinbrecher, U. Rosenbaum, G. Teutsch and H. Vereecken (2011): A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10 (3): 955-973.
  • Zhao, H., C. Montzka, R. Baatz, H. Vereecken and H.-J. Hendricks Franssen (2021): The Importance of Subsurface Processes in Land Surface Modeling over a Temperate Region: An Analysis with SMAP, Cosmic Ray Neutron Sensing and Triple Collocation Analysis. Remote Sensing 13(16): 3068. DOI: 10.3390/rs13163068